
A Wait-free Algorithm for Optimistic Programming:
HOPE Realized*

Crispin Cowan
Department of Computer Science and Engineering

Oregon Graduate Institute P.O. Box 91000
Portland, OR 97291-1000
crispinScse.ogi.edu

Hanan L. Lutfiyya
Computer Science Department
University of Western Ontario

London, Ontario N6A 5B7
hanan@csd.uwo.ca

ABSTRACT

Optimism is a powerful technique for avoiding latency by increas-
ing concurrency. Optimistically assuming the results of one com-
putation allows other computations to execute in parallel, even
when they depend on the assumed result. Optimistic techniques
can particularly benefit distributed systems because of the critical
impact of communications latency. This paper reviews HOPE: our
model of optimistic programming, and describes how optimism
can enhance distributed program performance by avoiding remote
communications delay. We then present the wait-free algorithm
used to implement HOPE in a distributed environment.

Keywords: optimism, concurrency, parallelism, distributed, roll-
back, wait-free, implementation.

1 INTRODUCTION

Optimism is a powerful technique for avoiding latency by increas-
ing concurrency. Optimistically assuming the results of one com-
putation allows other computations to execute in parallel, even
when they depend on the assumed result. This paper describes an
environment providing automatic assistance for writing optimistic
programs, and presents the wait-free algorithm used to implement
this environment.

Optimistic techniques can particularly benefit distributed sys-
tems. Communication latency is critical to performance because it
limits the degree of parallelism. Optimism can mask communica-
tions latency by making optimistic assumptions about the behavior
of remote nodes.

Avoiding communications latency is just a special case of the
general technique of using optimistic assumptions to avoid latency
by increasing concurrency. Optimism increases concurrency by
making an assumption about a future state, and verifying the as-
sumption in parallel with computations based on the optimistic as-
sumption.

The classic example is optimistic concurrency control: assume
that locks will be granted, process the transaction, andpost hoc ver-
ify that the locks were granted [17]. This paper reviews how to
avoid the latency of a remote procedure call by optimistically as-
suming that the call behaved as expected [1, 10, 11], illustrating
why distributed systems particularly benefit from optimism: mov-
ing a computation to a remote node increases latency, but does not
change the predictability of the computation.

* Supported in part by the National Sciences and Engineering Research Council of
Canada (NSERC) and ARPA.

19960724 093

Any assumption can be made, given a method to verify that the
assumption is correct. If the assumption is discovered to be cor-
rect, then latency has been avoided and performance has improved.
However, if the assumption is incorrect, then all computations that
used the assumption must be rolled back and re-executed using cor-
rect data.

Optimism has been used to enhance performance in various
areas [5, 20, 21], but mostly embedded in systems, and not ex-
posed to the programmer. Optimism is rarely used in applications
because optimistic programs are difficult to write and require ad
hoc techniques to implement. All of the causal descendant com-
putations of an optimistic assumption must be tracked, and rolled
back if the assumption proves false; a process we call dependency
tracking. Tracking all dependents of an optimistic assumption is
tedious, at best, without automatic assistance.

We believe that optimism research has been hindered by the
lack of adequate tools for making optimistic assumptions without
worrying about the details of dependency tracking, checkpointing,
and rollback. This paper presents HOPE (Hopefully Optimistic
Programming Environment): a programming model for express-
ing optimism.

Previously, we defined the HOPE programming model and
its applicability [5, 10]. We constructed a prototype HOPE sys-
tem [6], defined a formal semantics for HOPE [9], and measured
the performance of the prototype [11]. This paper presents the al-
gorithm used to build the prototype. The algorithm is wait-free in
that no user process ever blocks when executing a HOPE primitive.
We also prove that some important properties of the prototype are
consistent with HOPE'S formal semantics.

Section 2 presents related work. Section 3 describes the HOPE
programming model, Section 4 briefly describes the HOPE imple-
mentation, and Section 5 presents the wait-free algorithm used to
construct the prototype. Section 6 presents our conclusions and fu-
ture research.

2 RELATED WORK

Optimism has been used in a variety of applications such as fault
tolerance [20,15], replication [5,16,21], concurrency control [17],
and discrete event simulation [2,14]. However, optimism has not
been generally exploited because of the difficulty in writing opti-
mistic algorithms.

Optimistic programming is difficult, time-consuming, and ad
hoc, for the following reasons. First, checkpointing and rollback
is difficult and non-portable. Second, the programmer must keep
track of all actions that must be rolled back if the assumption is

mC(^AJtmmBpWTBD 3

Äßproved iat public leleasaj
Dtejnbufios üaßxttited

wrong, including remote processes that have been sent messages.
This requires that processes that make optimistic assumptions must
keep track of all remote processes that messages were sent to
(called dependency tracking). Third, the programmer must worry
about transitivity; what if a computation that proceeds based on an
optimistic assumption is used to decide whether another assump-
tion is valid? If this optimistic computation is rolled back then the
validation of the assumption must be undone.

Previous work in supporting optimistic programming in-
cludes [4, 14]. However, previous work has either restricted the
type of optimistic assumption that can be made, or restricted the
scope of optimistic computation [7]. In [4] computation based on
an assumption is limited to the scope of a statically defined encap-
sulation. In Time Warp [14], the amount of computation based on a
optimistic assumption is not statically bound, but only one kind of
optimistic assumption can be made: that messages arrive in time-
stamp order.

2.1 HOPE FEATURES

Any optimistic assumption can be made, and any method can be
used to verify an optimistic assumption, including a method se-
lected at run-time. HOPE is novel because we believe it to be the
first system in which both the kind and scope of an optimistic as-
sumption is unconstrained.

HOPE provides primitives that abstract the basic elements of
optimism: specifying an optimistic assumption, identifying the as-
sumption, and verifying correctness of the assumption. HOPE also
provides the novel assumption identifier as a separate entity in the
computational model. Previous optimistic systems have made op-
timistic computations directly dependent on other computations.

Optimistic assumptions can be affirmed or denied in parallel
with ongoing computations that depend on the optimistic assump-
tion. The primitives are general: any optimistic assumption can
be made, and any user-programmed criteria can be used in decid-
ing whether the optimistic assumption was correct. The verifica-
tion criteria can also be selected at run time. Furthermore, affirma-
tion and denial of optimistic assumptions, as well as making further
optimistic assumptions, can all be performed by computations that
are themselves optimistic, i.e. the primitives can be applied tran-
sitively. Despite the overhead required for these features, we have
shown that HOPE can decrease the latency of a remote procedure
call [11].

3 THE HOPE PROGRAMMING MODEL

The HOPE programming model is a set of primitives designed to
be embedded in some other system. HOPE can be embedded in
any message-based concurrent system.

Consider a distributed program composed of communicating
sequential processes that execute operations that change the state
of a process. A computation is a consecutive sequence of states in
the execution of a process. Rollback returns a process to a previ-
ous state in its computation and discards subsequentcomputations.
An optimistic assumption is an assertion about a future state that
has yet to be verified. An optimistic or speculative computation
is a one that proceeds based on an optimistic assumption and is de-
pendent on that assumption. If the optimistic assumption is found
to be true, then the optimistic computation is retained, otherwise it
is rolled back. HOPE provides one data type and four primitives:

AID x x is an assumption identifier or AID, used
to identify particular optimistic assump-
tions.

guess(x) Make an assumption identified by x. guess
eagerly returns True, and returns False if
rolled back.

amrm(x) Assert that the optimistic assumption iden-
tified by x is true.

deny(x) Assert that the optimistic assumption iden-
tified by x is false.

free.of(x) Assert that the current computation is not
dependent on the assumption identified by
x.

An AID is a reference to an optimistic assumption which en-
ables the primitives to separately specify dependence, precedence,
and confirmation of an assumption.

guess(x) is a boolean function that returns True if the assump-
tion identified by x is correct, and False if x's assumption is found
to be incorrect, guess(x) eagerly returns True, regardless of the
status of the assumption; speculative computation begins at this
point dependent on x. If x's assumption is later discovered to be
false, the process is rolled back to where it called guess(x), and
False is returned instead of True.

Idiomatically, guess(x) is embedded in an if statement. The
"true" branch of the if statement contains the optimistic algorithm,
and the "false" branch of the if statement contains the pessimistic
algorithm, aid Jnit(x) is used to initialize x ahead of time, so that
a checking mechanism can be set up to verify x's assumption.

affirm(x) asserts that the assumption associated with the AID
x is correct. deny(x) asserts that the assumption associated with
x is incorrect. If affirm(x) is executed anywhere in the system,
all the speculative computations executed from guess(x) onward
are retained. If deny(x) is executed anywhere in the system, the
computations from guess(x) onward are rolled back re-started from
guess(x) with a return code of False instead of True.

There is no restriction on how much computation can be exe-
cuted before an assumption is confirmed. Any process in the pro-
gram may confirm an assumption. Only one affirm or deny primi-
tive may be applied to a given assumption identifier, because mul-
tiple affirm or deny primitives are redundant, and conflicting af-
firm and deny primitives have no meaning. Speculative processes
can execute affirm and deny primitives, and the system will transi-
tively apply the assertions, i.e., if a speculative process is made def-
inite, then all affirm primitives it has executed will have the same
effect as definite affirm primitives.

In addition to explicit guess primitives, processes can also be-
come dependent on AIDs by exchanging messages. A speculative
process "tags" the messages it sends with the set of AIDs that it
depends on. Receivers implicitly apply guess primitives to each
of the AIDs in the message's tag.

free.of(x) asserts that the executing task is not dependent on
the assumption identified by x. If such a dependency is detected,
then x is denied, otherwise x is affirmed.

3.1 EXAMPLE: AVOIDING RPC DELAY

In a remote procedure call (RPC), the calling process is idle un-
til it gets a response from the remote machine. Fast networks may
not significantly reduce this idleness. For example, it takes 30 mil-
liseconds to send a photon from New York to Los Angeles and
back again. A transcontinental 100Mb/s network can send a 100
byte packets 100,000 times per second, but can only send that 100
byte packet 30 times per second if each transmission waits for a re-
sponse. A 100 MIPS CPU can execute over 3 million instructions
while waiting for a response from the opposite coast.

/* Worker Process */
line = call print("Total is ", total); /* SI — RPC */
if (line > PageSize)

call newpageO; /* S2 — RPC */
call print("Summary ..."); /* S3 — RPC */
/* ... end process */

Figure 1: Before Call Streaming Transformation

/* Worker Process */
aid_t PartPage, Order;

PartPage = aid_init();
Order = aid_init();
send(WorryWart, PartPage, Order, total);
if (guess(PartPage))

/* do nothing */ /* S2 */
else

call newpageO; /* S2 — RPC */
guess(Order);
call print("Summary ..."); /* S3 — RPC */
/* ... end process. */

/* WorryWart Process(PartPage, total) */
aid_t PartPage, Order;

receive(PartPage, Order, total);
line = call print("Total is ", total); /* SI — RPC */
free_of(Order);
if (line < PageSize)

affirm(PartPage);
else

deny(PartPage);
/* ... end process */

Figure 2: After Call Streaming Transformation

Let Si • S2 be two sequential RPC operations. Transforming
the synchronous RPCs into asynchronous messages avoids RPC
latency by executing Si and 52 in parallel. If Si and 52 are com-
pletely independent then it is easy to execute Si and 52 concur-
rently. But what if Si and 52 are not independent? The execution
of 52 may be a function of the response of the RPC done by Si.

For example, Figure 1 shows a program fragment in which 5i
is an RPC that prints a summary total and returns the current line
number of the page. 52 takes the line number and checks to see if
the line number now exceeds page size. If it does, then 52 creates
a new page; otherwise execution can immediately proceed to 53.

Bacon and Strom's Call Streaming algorithm [1] optimistically
parallelizes two such statements. We can parallelize Si and 52
(and hence the statements after 52) by making the optimistic as-
sumption that the report does not end exactly at the bottom of the
page, i.e., line < PageSize. Figure 2 shows how we can parallelize
Si and 52 as follows: Si is executed in the WorryWart process
while 52 (and the statements after 52) is executed in the Worker
process.

The Worker process spawns the WorryWart process to concur-
rently execute Si. Worker then executes guess(PartPage), and
based on the optimistic True return code, executes 52 and 53
as if the line count were in fact less than PageSize, and prints
"Summary..." without forcing a new page. However, the as-
sumption has yet to be verified and the Worker computation is now

HOPE Messages

User Process
HOPElib:
guess,
affirm...

Control

Guess, Affirm, Deny
AID Process

■ AID state machine

Replace, Rollback .
and dependency
sets

User Processes

User
Messages

Additional Control-generated
Guess and P_Guess messages

HOPE messages AID Processes

 ;:::.v-"-0

::.-0
--0

Figure 3: Structure of the Basic HOPE Model

speculative.

If line < PageSize is not valid, then deny(PartPage) is exe-
cuted, causing the Worker process to rollback to where it called
guess. Any processes that Worker sent a message to while spec-
ulative are also rolled back. Worker now resumes execution with
False returned from guess(PartPage). This tells the Worker that
the line value exceeded PageSize, so Worker calls newpage().

The execution of statements 52 and onward must not interfere
with Si's execution. 53 's message may arrive at the remote ma-
chine ahead of the message from Si in the WorryWart process.
The remote process becomes dependent on the assumption identi-
fier Order and by transitivity the WorryWart process becomes de-
pendent on Order. Because 53 changes the line number, Si's test
is invalidated. The free.of(Order) primitive is used to detect this
causality violation and force rollbacks to solve the problem.

4 PROTOTYPE SYSTEM

HOPE was built on top of a pre-existing message passing system
to make optimistic techniques easily accessible. PVM [13] was se-
lected because the source code was freely available, it is well sup-
ported by its authors, and has a broad user base, providing a po-
tentially large audience for optimism. PVM is implemented as a
library of message passing and administrative functions callable.
The user's tasks run as ordinary processes on the host system.

Figure 3 shows the basic structure of the HOPE implemen-
tation. User programs access HOPE primitives through the
HOPElib library, which contains functions for each of the HOPE
primitives, as well as book-keeping functions that process HOPE
messages for dependency tracking. Assumption identifiers are im-
plemented as AID processes, which are spawned in the course of
executing the HOPE guess function. AID processes track the set
of processes that depend on the associated assumption identifier.
[7] details the implementation, including techniques for check-
point and rollback of a UNIX process.

5 THE HOPE ALGORITHM

The HOPE algorithm operates in an environment abstracted from
the implementation in Section 4: concurrent processes that com-
municate via messages. The primary purpose of optimistic primi-
tives is to avoid latency, so it is an important design criterion that
all of the remote operations resulting from user processes execut-
ing HOPE primitives be asynchronous: user processes executing
HOPE primitives should never have to wait for a message from an-
other process. This section describes an algorithm to provide the
HOPE primitives that is consistent with this design criterion, and
uses only concurrent processes, messages, and a rollback facility
for the processes.

As in Section 4, dependency tracking is implemented using a
combination of AID processes and library functions attached to
each user process. User process execution is recorded as an execu-
tion history of process states composed of intervals, as detailed in
the formal semantics of HOPE [9]. An interval is a subsequence
of an execution history between two executions of the guess prim-
itive, and constitutes the smallest granularity of rollback that may
occur. An interval is said to be speculative if that interval can
be rolled back; otherwise, the interval is said to be definite. We
use A, B,... to denote intervals in the history of user processes,
X, Y,... to denote assumption identifiers (AIDs), andPx, PY,---

to denote AID processes.
The intervals in a user process's history, and the dependency

tracking sets associated with each interval, are stored in data struc-
tures in the HOPElib attached to each user process, but hidden
from the programmer. The key dependency set is the IDO (I De-
pend On) set of assumption identifiers that the interval depends on.

AID processes store and process dependency tracking informa-
tion relating to the assumption that they identify. Local modifica-
tions to dependency sets are then simply local operations, and mod-
ifications to remote sets become messages requesting the modifica-
tion to that set sent to the appropriate user or AID processes.

HOPE primitives are functions called from each user process.
The functions make local modifications to the process history and
local dependency sets, and then send messages to appropriate AID
processes for further processing.

AID processes process messages from user processes, modify-
ing their dependency tracking sets in response to their current state
and the type and contents of the message. The AID processes com-
pute the remaining dependency set and history changes, and send
messages to other user processes. The messages sent to user pro-
cesses are intercepted by the message passing system and given to
the HOPElib attached to each user process for processing.

5.1 THE PROBLEM: INTERFERENCE

The HOPE operational semantics [9] specify the execution of a
HOPE primitive as a sequence of operations. A direct implemen-
tation of these semantics in a distributed system requires updating
variables in remote processes. Because HOPE primitives may be
executed by concurrent processes, they are subject to concurrency
errors due to interference [3, page 11], as detailed in [7].

One way to avoid interference problems is to prevent the inter-
leaved execution of HOPE primitives by serializing execution of
HOPE primitives, with unfortunate consequences. A more scal-
able approach would be to use some form of concurrency con-
trol on the HOPE data structures, producing a serializable execu-
tion of the HOPE primitives [3]. However, the time and space re-
quirements of incorporating a general concurrency control system
within the HOPE run-time are prohibitive. The remote communi-

Type From To Arguments Meaning

Guess User AID iid Sender guesses
AID is true

Affirm User AID iid,
IDO

Sender affirms AID,
subject to IDO

Deny User
or AID

AID Sender denies AID
unconditionally

Replace AID User iid,
IDO

Replace sender with
IDO in iid.IDO,

Rollback AID User iid Rollback interval iid

Table 1: Basic HOPE Messages

cations latency inherent in a concurrency control protocol is pre-
cisely the form of delay HOPE was designed to avoid.

Rather than try to avoid conflicts, we allow conflicts to occur
and correct after the fact using forward error recovery. Like con-
currency control, this produces only serializable executions, but
does so at a lower cost by exploiting specific knowledge of the
HOPE primitives. We show that such an algorithm is consistent
with the HOPE semantics by showing that the algorithm satisfies
the following Theorem [9, page 8], which essentially states that
the HOPE algorithms finalize precisely those intervals which have
been definitely affirmed:

Theorem 5.1 For all intervals B, finalize(B) occurs ijff affirm(X)
is applied to all of the AIDs X € B.I DO by intervals that even-
tually become definite.

Subsection 5.2 describes an algorithm in which the depen-
dency sets are updated without regard to interleaving conflicts. We
show that this algorithm satisfies Theorem 5.1 if the intervals ex-
ecuting concurrent affirm primitives do not mutually depend on
the AIDs being affirmed by the other intervals, then the algorithm
detects and corrects for conflicts. Subsection 5.3 extends this al-
gorithm so that it satisfies Theorem 5.1 under all circumstances.

5.2 A BASIC ALGORITHM

This section describes Algorithm 1: an algorithm for HOPE that
implements the set updates, but does not prevent interleaving con-
flicts. The algorithm keeps user programs free of synchronization
delay because at no point in the execution of a HOPE primitive
does any user process wait for acknowledgment from any other
process.

Processes make updates to the dependency sets and histories of
remote processes by sending messages. Table 1 lists the message
types, the source and destination of the message, the contents, and
the meaning of the message. The source and destination specifica-
tion "User" refers to the HOPE modules attached to user processes
as in Figure 3, and "AID" refers to an AID process.

A message is denoted < Type, iid, IDO >. Some messages
omit some arguments, which are considered 0. The iid field is the
identity of either the sending or destination interval. The IDO set
is either the IDO set of the sending interval in the user process,
or the set intended to replace the sending AID in the destination
interval's IDO set.

Each HOPE primitive is provided as a function that takes an
AID as its argument. Primitive execution manipulates the local
sets, sends a message to the specified AID process, and possibly
messages to other AID processes in the interval's dependency sets.

All of the primitives except guess expect the argument to be the
process identifier of an AID process, guess will also use an AID
as an argument, but in addition, if the argument is 0, then guess in-
fers that this is a new optimistic assumption and spawns a new AID
process to track the new optimistic assumption.

AID PROCESSES

An AID process models an AID by storing its state. The affirm and
deny primitives applied to AIDs send Affirm and Deny messages
to the AID process. The remaining message types do the depen-
dency tracking bookkeeping. Execution of the AID processes is
described using state machines that loop forever processing mes-
sages.

An AID process responds to a message according to the mes-
sage contents and the state of the AID. The AID state is represented
by the dependency sets, and the variable state which represents the
following possible truth value of the associated optimistic assump-
tion. There are three additional truth values in addition to True and
False to reflect the partial knowledge that optimism introduces:

Cold the AID has not had any primitives applied to
it yet

Hot AID has received a Guess message, but has
not yet been affirmed

Maybe AID has received an Affirm message, but was
affirmed subject to the set IDO of other AID's
also being affirmed

True AID has been unconditionally affirmed

False AID has been unconditionally denied

AID processes record the following dependency sets:

DOM Depends On Me set of intervals contingent on
this AID

A JDO Affirm-I Depend On set of AIDs that predi-
cate the affirm of this AID

The AID state machine begins in state Cold, and "terminates"
in state True or False, which are final states. The AID process
does not terminate, however, because there may still exist pro-
cesses with pending guess primitives to be applied to the AID, so
the AID process must continue to respond to guess messages. Ref-
erence counting can garbage collect old AID processes.

Figure 4 shows the major state transitions of the AID state ma-
chine. Figure 5 shows the top level of the formal specification of
the AID state machine. The machine receives messages, and uses
the type of the message to select further processing, as shown in
Figures 6, 7, and 8. The following text informally describes what
the algorithm is doing. The comments throughout assume that X
is the identity of the assumption associated with this AID process,
and that the variable my_pid will reflect this as Px- The variable
sender indicates the process identifier of the process that sent the
message to Px ■

Guess Message Processing: Guess eventually returns either
"true" or "false," indicating the final state of the AID. Thus Guess
messages are requests from User processes to AID processes for
the terminal state of the AID process: either True or False. If
Px is in state Cold or Hot, then the terminal state of the AID
is not yet known, and so the AID process adds the sender to the
Px .DOM set until the state is resolved into either True or False.
If Px is in state Maybe, then it has been speculatively affirmed;
the validity of the affirmation is dependent on all of the other AIDs

Affirm, IDO empty

Send (Replace, NULL) to sender Send Rollback tn sender

Figure 4: AID State Machine Diagram

state := Cold
for ever do

M := receive any message

switch M.type:
case Guess:

process_guess()
case Affirm:

process_affirm()
case Deny: // unconditional

process_deny()
end switch

end for

Figure 5: AID State Machine for Px

in the Px-AJDO set (the set used to speculatively affirm X)
also being affirmed. So Px sends a Replace message back to the
sender, telling the sender to depend on the list of AID processes
specified in Px-AJDO set instead of X {Px in effect "passes
the buck"). Finally, if the AID process is in state True or False,
the request can be answered immediately and the AID process
sends back a < Replace, A,® > (replace X with 0 in A.I DO)
or < Rollback, A > message, respectively.

Affirm Message Processing: An Affirm message asserts that the
AID's assumption is true. If the M. ID O set is empty, then the AID
process Px has been definitely affirmed, and so proceeds directly
to state True, and sends < Replace, A, 0 > messages to all inter-
vals A found in the Px-DOM set. Otherwise the assertion is ten-
tative and depends on all of the other AID processes in the M.I DO
set also being affirmed, and so sets A JDO = M.I DO and state
to Maybe, and sends < Replace, A, A JDO > messages to all
intervals A found in the Px-DOM set.

Deny Message Processing: Unlike Affirm messages, Deny mes-
sages are always unconditional1. AID processes in states True and
False ignore Deny messages; in all other states the AID process
unconditionally proceeds to state False, and sends Rollback mes-
sages to all processes who's intervals appear in Px-DOM.

1 Deny primitives can be buffered until they are definite.

process_guess()
switch state:
case Cold:

DOM := {sender} // record the Guess
state := Hot

case Hot:
DOM := DOM U {sender} // record the Guess
II state is unchanged

case Maybe:
send <Replace, M.iid, AJDO> to sender
// tells the sender to depend on the list of
II AID processes specified in the AJDO set
II instead of X
II state is unchanged

case True:
send <Replace, M.iid, 0> to sender
// replace X with 0 in sender's IDO
II state is unchanged

case False:
send <Rollback, M.iid> to sender
// state is unchanged

end switch
end process_guess

Figure 6: Guess Message Processing

process_affirm()
switch state:

case Cold, Hot, Maybe:
AJDO := M.IDO
for all members B € DOM set do

send <Replace, B.iid, A_IDO> to B.pid
end for
if AJDO = 0 then

state := True
else

state := Maybe

case True, False: // user error
abort

end switch
end process_affirm

Figure 7: Affirm Message Processing

CONTROL MESSAGE PROCESSING IN
USER PROCESSES

Dependency tracking requires changing the execution history of
user processes executing on remote machines. The AID pro-
cesses make these changes by sending messages back to user pro-
cesses, which are intercepted and applied by the function Control
in HOPElib (see Figure 3). Control treats the sequence of inter-
vals in the process's history as a set of state machines, using the
message contents and the state of the specified interval to compute
the required updates. An interval state is comprised of the follow-

process_deny()
switch state:

case Cold, Hot, Maybe:
for all members B € DOM set do

send <Rollback, B.iid> to B.pid
end for
state := False

case False: // redundant, ignore

case True: // user error
abort

end switch
end process_deny

Figure 8: Deny Message Processing

Replace Sender with IDO in A.IDO

Figure 9: Control: Interval State Machine Diagram

ing:

IDO I Depend On

IHD I Have Denied

IHA I Have Affirmed

Figure 9 shows an interval state machine, Figure 10 shows the
formal definition of the control state machine, and the following
text presents an informal description. Sender is the sending AID,
and target is the interval that the message should be applied to. As
mentioned earlier, all Control operations are completely transpar-
ent to the programmer.

Rollback Message Processing: A Rollback message causes the
specified interval A, and all subsequentintervals, to be rolled back.
The rollback happens regardless of the state of A, so long as A has
not already been rolled back. The process is rolled back to the state
immediately preceding the beginning of interval A.

Replace Message Processing: Replace indicates that the sending
AID process Px should be removed from the IDO set of the spec-
ified interval A, and replaced with the accompanying M.IDO set.
If the resultant A.IDO set is empty, then interval A is finalized.

If the interval is not finalized, then it must update its dependen-
cies. [9] specifies that speculative execution of affirm(X) in inter-
val A should add all intervals listed in X.DOM to the DOM set

control (message M)
target := M.iid

switch M.type
case Rollback:

if target S history then
rollback(target)

end if

case Replace:
if M.IDO = 0 then

targetlDO := target.IDO \ {sender}
if targetlDO = 0 then

finalize(target)
end if

else if M.IDO # 0 then
for each Y € M.IDO do

targetlDO := (target.IDO U {Y})
\ {sender}

send <Guess, target> to Py
end for

end if
end switch

end control

Figure 10: Control State Machine

of all AIDs listed in A.I DO. The AID process initiated this addi-
tion to the DOM sets by sending the Replace message to all de-
pendent intervals, and the Control function completes the DOM
addition by sending Guess messages to all of trie new AID pro-
cesses in the replacement I DO set to add the sending interval to
the DOM set of the receiving AID process.

Control applies finalize and rollback functions to intervals in
a history. Finalized) causes A to become definite, and makes ap-
propriate updates to AID processes that were the subject of spec-
ulative HOPE primitives within interval A. Rollback(A) similarly
rolls back the interval A, and applies updates to AID processes that
were the subject of speculative HOPE primitives within interval A.
Figure 11 presents the algorithms for finalize and rollback.

Satisfying Theorem 5.1 We now show that Algorithm 1 satisfies
Theorem 5.1 under certain circumstances. We specify the circum-
stances using a dependency graph of the dependencies between
intervals and AIDs. Nodes of the graph are intervals and AIDs,
and edges represent the "depends on" relation:

Definition 5.1 An interval A depends on an AID Y when ever
Y € A.IDO, denotedas A -> Y.

Definition 5.2 An AID X depends on an AID Y when ever Y €
Px-AJDO, denotedas X -» Y.

Consider a circumstance in which interval A depends on AID
Y, and interval B depends on AID X; affirm(X) is executed in
A and affirmfY) is executed in interval B. Figure 12 shows the
dependency graph sequence in the non-interleaved case where af-
firm(X) is executed first The speculative affirm(X) in A while
A depends on Y adds Y to Px-AJDO, represented by the edge
X-+Y.

Figure 13 shows the dependency graph sequence when the ex-
ecution of affirm primitives interleaved and interfere. The specu-
lative affirm(X) in A while A depends on Y introduces a depen-
dency from X -¥ Y, as before. However, the simultaneous spec-
ulative affirm(Y) in B while B depends on X also introduces a

finalize (interval A)
remove the checkpoint of the process state created

when A was started
mark A as "definite'' in the process history
for all members Y € A.IHA do

// unconditional Affirm
send <Affirm, A, 0> to Py

end for
for all members Y € A.IHD do

send <Deny> to Py
end for

end finalize

rollback (interval A)
for all members Y € A.IHA do

send <Deny> to Py
end for
roll back the process to the state checkpointed at

the beginning of interval A
truncate the process history just prior to A
return False to the guess primitive that initiated

interval A
end rollback

Figure 11: Interval Management Functions

0 ©
B

© © ©

0
A depends on Y,

B depends on X

A affirms X B affirms Y

 *■ "Depends on"

Figure 12: Non-interleaved Affirm Dependency Graph

dependency from Y ->■ X. Thus a cyclic dependency is formed
between Y and X. Dependency cycles can occur in rings of any
size.

We now show that Algorithm 1 satisfies Theorem 5.1 for
acyclic dependency graphs. Lemma 5.1 shows that Algorithm 1
corrects for conflicts between concurrent affirms if the resultant
dependency graphs are acyclic, and Lemma 5.2 similarly shows
that Algorithm 1 corrects conflicts between concurrent affirms and
guesses. Lemma 5.3 shows that a speculative affirm in an inter-
val that is later finalized has the same effect as a definite affirm.
Lemma 5.4 shows that if all AIDs that an interval A depends on are
definitely affirmed, then A will be finalized. Finally, Theorem 5.2
shows that Algorithm 1 satisfies Theorem 5.1 if the program's ex-
ecution forms dependency graphs that are always acyclic.

Lemma 5.1 For any two conflicting affirms, either:

1. The conflicting operations commute to produce the same re-
sult,

2. Algorithm 1 corrects for the conflict, or

3. A cyclic dependency is formed.

Proof: A construction that shows that for all possible forms of con-
flict, Algorithm 1 meets one of the criteria [7, pages 67-73]. First

0

A depends on Y,

B depends on X

A affirms X... ... But B simultaneously

affirms Y
A and B depend on

the X,Y cycle

0«0
0 B

A and B no longer
depend on X,Y cycle

Figure 13: Interleaved Affirm Dependency Graphs: Interference Figure 14: Correcting Cyclic Dependency

the set of atomic read and write operations resulting from affirm
executions is identified. Then the construction exhaustively shows
that for all of the potential conflicts between these read and write
operations, they satisfy one of the three conditions in the lemma.

Lemma 5.2 For any conflicting concurrentexecution of an affirm
primitive and a guess primitive, either:

1. The conflicting operations commute to produce the same re-
sult, or

2. Algorithm 1 corrects for the conflict.

Proof: A similar construction to Lemma 5.1 [7, pages 73-75].

Lemma 5.3 Affirm Transitivity: Let B be an interval in process
Q that depends on an AID X, i.e., X £ B.I DO, andlet all depen-
dency graphs produced by this execution be acyclic. The effect of
executing affirm(X) within a speculative interval A upon B.I DO
and the state of Px, followed by A eventually being finalized, is
the same as the effect of definite execution o/affirm(X).

Proof: Definite execution of affirm(X) will place Px in state True
and send < Replace, B,9 > to process Q, removing X from
B.I DO and to placing Px in state True.

Let speculative interval A execute affirm(X) for some X £
B.I DO. Speculative affirm(X) in A places Px in state Maybe,
and sets Px.AJDO <- A.I DO (Figure 7). Since B £
Px.DOM, Px will send < Replace, B, AJDO > to process
Q. Control uses this message to replace X with A.IDO in
B.I DO, and sends < Guess ...> messages to all AID processes
in A.IDO (Figure 10). The < Guess ...> messages add B to
the DOM set attached to each AID process in A.IDO, ensuring
that B is in the DOM set of all AID processes that also contain A.
Let a = A.IDO be the set of AIDs that replace X.

By assumption, interval A is subsequently finalized. Since
Control will only finalize A if A.IDO = 0, all AID processes
in A.IDO have entered state True, and thus have been replaced
with 0. Since B is in all of the DOM sets that contain A, all Re-
place messages sent to A will also be sent to B. Lemma 5.1 and
the acyclic assumption assure that any concurrency conflicts be-
tween Replace messages are detected and corrected. All replace-
ments made in A.IDO will also be made in B.IDO, so the re-
placements that reduced A.IDO to 0 will remove all of a from
B.IDO. Thus X has effectively been removed from B.IDO.

Since A has been finalized, a < Affirm, A, message is
sent to X (Figure 11), placing X in state True (Figure 7). Thus the
effect is the same as a definite affirm(X). ü

Lemma 5.4 For any interval B, (/affirm is definitely executedon
all AIDs in B.IDO, then finalize(B) results.

Proof: Definite affirm on each X £ B.IDO
sends < Affirm,..., 0 > to each Px, placing each Px in state

True and sends < Replace,..., 0 > messages to each interval in
Px.DOM (Figure 7).

Each X was added to B.IDO by a guess primitive or a Re-
place message; in both cases < Guess ... > is sent to the associ-
ated AID process Px to add B to Px-DOM. Lemma 5.2 assures
that concurrency conflicts between Replace and Guess messages
are detected and corrected. Thus for each X £ B.IDO, it is also
the case that B £ Px.DOM.

Each AID process Px has sent < Replace,..., 0 > to each
interval in its DOM set, including all intervals in B.IDO. Thus
all AIDs listed in B.IDO have been replaced with 0, inducing
Control to finalize B (Figure 10). O

Theorem 5.2 For all intervals B in any execution where the de-
pendency graph is always acyclic, Algorithm I executes final-
ize^) iff affirm(X) is applied to all AIDs X £ B.IDO by in-
tervals that are eventually finalized.

Proof: First we show that if affirm(X) is applied to all AIDs X £
B.IDO by intervals that eventually become definite, then final-
ize(B) will result.

Lemma 5.4 shows that if all of the affirm(X) primitives are
definitely executed, then finaIize(B) will result. Lemma 5.3 shows
that speculatively executing affirm in intervals that are eventually
finalized has the same effect as definite affirms, and so finalizefB)
results in either case.

Assume that B has been finalized, and that 3X £ B.IDO
that has not been affirmed, and use contradiction to prove that fi-
nalize(B) implies that affirm(X) has been applied to all AIDs X £
B.IDO. Since X has not been affirmed, no operation will have
removed X from B.IDO. Therefore B.IDO / 0, preventing
Control from finalizing B, contradicting the assumption that B has
been finalized. Therefore, for all intervals B, B is finalized jj^all
of the AIDs X £ B.IDO are affirmed in intervals that eventually
become definite, ü

5.3 CYCLE DETECTION

Algorithm 1 satisfies Theorem 5.1 for acyclic dependency graphs.
However, if the dependency graph becomes cyclic, as in Figure 13
when mutual affirm primitives are executed simultaneously, then
Algorithm 1 will fail to detect the cycle, and the participating inter-
vals will "bounce" their way around the cyclic of dependent AIDs
forever [7].

Algorithm 2 extends Algorithm 1 to detect and remove depen-
dencies from intervals to AIDs that are members of a cycle. Fig-
ure 14 shows the dependency graph progression from the cyclic de-
pendency in Figure 13 to a state in which the intervals no longer
depend on the cycle. If one or more of the intervals that executed

control (message M)
target := M.iid

switch M.type
case Rollback:

if target g history then
rollback(target)

end if

case Replace:
if M.IDO = 0 then

targetlDO := target.IDO \ {sender}
if targetlDO = 0 then

finalize(target)
end if

else if M.IDO ^ 0 then
for each Y € M.IDO do

if Y € target.UDO then
targetlDO := target.IDO \ {sender}
if targetlDO = 0 then

finalize(target)
end if

else
targetlDO := target.IDO U {Y}
send <Guess, target> to Py

end if
end for
targetlDO := target.IDO \ {sender}
targetUDO := target.UDO U {sender}

end if
end switch

end control

Figure 15: Control State Machine with Cycle Detection

dency cycles can only be composed of AIDs. The AJDO set as-
sociated with each AID process defines the set of out-bound edges
attached to each AID node. Only the speculative execution of af-
firm® will set Px .AJDO to a non-null value, as shown in Fig-
ure 7. Thus all members of a cyclic dependency must be AID nodes
that have been speculatively affirmed. D

Theorem 5.3 If a set of AID processesforms a dependency graph
G that contains a cycle C, then Algorithm 2 will remove all depen-
dencies from speculative intervals on all members of the set C.

Proof: By inspection, we show that speculative affirm process-
ing detects and eliminates dependencies on members of cycles. An
AID process Px that has been speculatively affirmed is left in state
Maybe with an AJDO set indicating the list of other AIDs that
it depends on from the speculative affirm. An interval A in a user
process attempting to depend on X by sending it a Guess message
(either from a user guess primitive or from processing a Replace
message) will get a < Replace, A, AJDO > message as a re-
sult. AJDO contains the set of AIDs that X depends on. Thus
user processes that attempt to depend AIDs that have been specu-
latively affirmed are forced to instead depend on the set of AIDs
that the speculatively affirmed AIDs depend on.

If an AID X is in a dependency cycle, then any interval at-
tempting to depend on X will be forced to instead depend on the
"next" AID in X's cycle, Y. Attempting to depend on Y will sim-
ilarly pass the interval on to the following AID, in effect "walking
around" the ring of dependencies.

As interval A walks around the dependency cycle, it records
the list of AID nodes that it has attempted to depend on in A {/ D O.
When A attempts to depend on an AID node that it has already tried
to depend on, it is detected by comparison with A.UDO (see Fig-
ure 15). Control responds by deleting A's dependency on the ring.
D

the speculative affirms that constructed the cycle are eventually fi-
nalized as a result, they will send unconditional Affirm messages
to the members of the cycle, causing them to be definitely affirmed.
The collection of dependency sets stored with each interval is ex-
tended with a UDO (Used to Depend On) set of AIDs that used
to be in I DO, to prevent a process from cyclicly exchanging one
dependency for another.

The extended Control function in Figure 15 implements cycle
detection. In addition to removing the sender of the Replace mes-
sage from the specified interval's I DO set, the senderis also added
to the UDO set. If a Replace message arrives with a non-empty
replacement MJDO set, then MJDO is compared against the
specified interval's UDO set. If an AID in MJDO is found in
the UDO set, it is discarded: This represents a cycle in the de-
pendency loop, and once detected the interval no longer needs to
depend on the cycle. We show that this completely satisfies Theo-
rem 5.1 by showing that it removes all dependencies from intervals
to AID nodes that are members of a cycle.

Lemma 5.5 All members of a dependency cycle must be AIDs that
have been speculatively affirmed.

Proof: We eliminate all nodes from the graph other than AID
nodes that have been speculatively affirmed. We first note that all
nodes in a cycle must have both in and out edges, and then show
that only speculative affirms can attach both in and out edges to an
AID node.

Interval nodes only have out-bound dependency edges, be-
cause no other node can ever depend on an interval. Thus depen-

6 CONCLUSIONS &. FUTURE RESEARCH

We presented a new model for expressing optimism by providing
primitives to identify optimistic assumptions, and then later assert
whether the assumptions were correct, while automating the de-
pendency tracking necessary to maintain consistency. The model
has been implemented, and the algorithm has been shown to be
both wait-free, and consistent with the formal semantics of the
HOPE primitives with respect to finalizing speculative computa-
tion.

Elsewhere we have defined a formal semantics for HOPE [9].
The prototype implementation is freely available [8] and we have
shown that the prototype can improve RPC performance by of up
to 70%. We have also done preliminary investigations into the ap-
plication of HOPE to replication [5] scientific programming [6],
and software fault tolerance [18]. In future work, we will show
that these algorithms are quadratic in the number of intervals and
AIDs associated with an affirm2, and we will also extend the
application of optimism beyond its traditional domains into new
areas such as optimistic specialization [19] and truth maintenance
systems [12].

7 ACKNOWLEDGMENTS

HOPE was inspired by optimism studies at the IBM T.J. Watson
Research Center by Rob Strom et al. Thanks go to Andy Lowry,
Jim Russell and Ajei Gopal of IBM for their early comments on

We expect the N to be small.

this work. Thanks go to Mike Bennett and Andrew Marshall of
UWO for ongoing encouragement and commentary, and to Roger
Barga, Jonathan Walpole, and Calton Pu of OGI for their com-
ments on this paper.

REFERENCES

[I] David F. Bacon and Robert E. Strom. Optimistic Paralleliza-
tion of Communicating Sequential Processes. In Third ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, April 1991.

[2] RajiveL.BagrodiaandWen-TohLiao. Maisie: A Language
for the Design of Efficient Discrete-Event Simulations. IEEE
Transactions on Software Engineering, 20(4):225-238, April
1994.

[3] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Good-
man. Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, Reading, Massachusetts, 1987.

[4] R.G. Bubenik. Optimistic Computation. PhD thesis, Rice
University, May 1990.

[5] Crispin Cowan. Optimistic Replication in HOPE. In
Proceedings of the 1992 CAS Conference, pages 269-282,
Toronto, Ontario, November 1992.

[6] Crispin Cowan. Optimistic Programming in PVM. InPro-
ceedings of the 2nd PVM User's Group Meeting, Oak Ridge,
TN, May 1994.

[7] Crispin Cowan. A Programming Model for Optimism. PhD
thesis, University of Western Ontario, March 1995.

[8] Crispin Cowan. HOPE: Hopefully Optimistic Programming
Environment. Prototype implementation avialable via FTP
from
ftp://ftp.csd.uwo.ca/pub/src/hope.tar.gz,
August 1995.

[9] Crispin Cowan and Hanan Lutfiyya. Formal Semantics for
Expressing Optimism: The Meaning of HOPE. In 1995 Sym-
posium on the Principles of Distributed Computing (PODC),
Ottawa, Ontario, August 1995.

[10] Crispin Cowan, Hanan Lutfiyya, and Mike Bauer. Increas-
ing Concurrency Through Optimism: A Reason for HOPE.
In Proceedings of the 1994 ACM Computer Science Confer-
ence, pages 218-225, Phoenix, Arizona, March 1994.

[II] Crispin Cowan, Hanan Lutfiyya, and Mike Bauer. Per-
formance Benefits of Optimistic Programming: A Measure
of HOPE. In Fourth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-4), Au-
gust 1995.

[12] J. Doyle. A Truth Maintenance System. Artificial Intelli-
gence, 12:231-272,1979.

[13] Al Geist, Adam Geguelin, Jack Dongarra, Wicheng Jiang,
Robert Manchek, and Vaidy Sunderam. PVM: Parallel Vir-
tual Machine, a Users' Guide and Tutorial for Networked
Parallel Computing. The MIT Press, Cambridge, Mas-
sachusetts, 1995.

[14] D. Jefferson. Virtual Time. ACM Transactions on Program-
ming Languages and Systems, 3(7):404-425, July 1985.

[15] D.B. Johnson and W.Zwaenepoel. Recovery in Distributed
Systems using Optimistic Message Logging and Checkpoint-
ing. J. Algorithms, 11(3):462-491, September 1990.

[16] Puneet Kumar. Coping with Conflicts in an Optimistically
Replicated File System. In 1990 Workshop on the Man-
agement of Replicated Data, pages 60-64, Houston, TX,
November 1990.

[17] H.T. Kung and John T. Robinson. On Optimistic Methods
for Concurrency Control. ACM Transactions on Database
Systems, 6(2):213-226, June 1981.

[18] Hanan Lutfiyya and Crispin Cowan. Language Support for
the Application-Oriented Fault Tolerance Paradigm. Submit-
ted for review, 1995.

[19] Calton Pu, Tito Autrey, Andrew Black, Charles Consel,
Crispin Cowan, Jon Inouye, Lakshmi Kethana, Jonathan
Walpole, and Ke Zhang. Optimistic Incremental Special-
ization: Streamlining a Commercial Operating System. In
Symposium on Operating Systems Principles (SOSP), Cop-
per Mountain, Colorado, December 1995.

[20] R.E. Strom and S. Yemini. Optimistic Recovery in Dis-
tributed Systems. ACM Transactions on Computer Systems,
3(3):204-226, August 1985.

[21] P. Triantafillou and D.J. Taylor. A New Paradigm for High
Availability and Efficiency in Replicated and Distributed
Databases. In 2nd IEEE Symposium on Parallel and Dis-
tributed Processing, pages 136-143, December 1990.

